Exercise IV

1. Sketch the graph of a function $f(x)$ with domain $[3,6]$ and range $[2,7]$.
2. Sketch the graph of a function $f(x)$ with domain $[3,6]$ and range $[2,7] \backslash\{4\}$.
3. The following is a sketch of the graph of the function $f(x)$:

As the sketch indicates, f has domain $[-2,5]$ and the graph consists of two straight line segments. Write down the definition for $f(x)$.
4. Given that $\lim _{n \rightarrow \infty} \frac{1}{n}=0$ and $\lim _{n \rightarrow \infty} k=k$ for every constant sequence $\{k\}$, use the properties of limits to prove carefully that

$$
\lim _{n \rightarrow \infty} \frac{3 n^{3}-3 n^{2}+1}{n^{3}+n}=3 .
$$

5. Let $k>0$. Use the inequality $(1+k)^{n} \geq 1+n k, \forall n \in \mathbb{N}$ and the Squeezing Theorem to prove that
(i) $\lim _{n \rightarrow \infty} \frac{1}{10^{n}}=0$
(ii) $\lim _{n \rightarrow \infty} 0.6^{n}=0$
(iii) $\lim _{n \rightarrow \infty}\left(\frac{4}{7}\right)^{n}=0$
6. Determine whether each of the following sequences is convergent or not and, if convergent, determine the limit:
(i) $\left\{\frac{3 n}{5 n^{2}+4}\right\}$,
(ii) $\left\{\frac{6 n^{2}+1}{n^{3}+5}+7\right\}$,
(iii) $\left\{\left(\frac{7}{9}\right)^{n}\right\}$,
(iv) $\left\{\frac{3^{n}}{4^{n}}\right\}$,
(v) $\left\{2+\frac{6}{5^{n}}\right\}$,
(vi) $\left\{\frac{4^{n}}{3^{n}}\right\}$,
(vii) $\left\{\frac{n^{2}}{n+5}\right\}$.
7. Express each of the following infinite decimals in the form $\frac{a}{b}$ where a, b are integers:
(i) 0.23 i ,
(ii) $0.459 \dot{3} \dot{5} \dot{1}$
(iii) $1.83 \dot{9}$.
8. Consider the series

$$
\frac{9}{10^{2}}+\frac{9}{10^{4}}+\frac{9}{10^{6}}+\ldots
$$

Write down the first five terms of the sequence of partial sums for this series. Express each of these terms as a decimal.

